Current Status of $\pi^+\pi^0\gamma$ analysis

KEK & Univ. of Tokyo

Toshinao Tsunemi

Outline

- 1. Theory
- 2. Kinetic region in this analysis
- 3. correction on target
- 4. consistency between real data and UMC
- 5. summary

IB and DE component

Spectrum for IB and DE separation

$$\frac{\mathrm{IB}}{\partial T_{+}\partial W} \frac{\mathrm{INT}}{\partial T_{+}\partial W} \frac{\mathrm{DE}}{(1+2\frac{m_{\pi^{+}}^{2}}{m_{K}}Re(\frac{E}{eA})W^{2} + \frac{m_{\pi^{+}}^{2}}{m_{K}^{2}}(|\frac{E}{eA}|^{2} + |\frac{M}{eA}|^{2})W^{4})}$$

$$W^2 = \frac{E_{\gamma}^2 \times (E_{\pi^+} - P_{\pi^+} \times \cos \theta_{\pi^+ \gamma})}{m_{K^+} \times m_{\pi^+}^2}$$

$$E_{\gamma}$$
 radiated gamma energy $\cos heta_{\pi^+\gamma}$ opening angle between E_{π^+} pion energy m_{K^+} kaon mass P_{π^+} pion momentum m_{π^+} pion mass

W spectrum

$$W^2 = \frac{E_{\gamma}^2 \times (E_{\pi^+} - P_{\pi^+} \times \cos \theta_{\pi^+ \gamma})}{m_{K^+} \times m_{\pi^+}^2}$$

$$E_{\gamma} \quad \cos \theta_{\pi^+ \gamma} \quad W$$

$$\text{IB} \qquad \text{IB} \qquad \text{IB} \qquad \text{IB}$$

Charged track spectrum

dE/dx in scintilator

Correction on target

- Azimuthal angle of charged track
- Range in target
- Energy deposit in target

Study with UMC was performed

UMC provides us true value of the measured variables.

Azimuthal angle

E787 standard extrapolate the UTC track, assuming that the track in target is a part of circle. This means energy deposit in target is neglected.

New method

Step by step extrapolation. Energy deposit is calculated, being based on Bethe-bloch formula.

Pion cell

Simple extrapolation

True track

Azimuthal angle

E787 standard Energy deposit in target is neglected.

New method. Energy deposit is calculated, being based on Bethe-Bloch formula.

Resolution of azimuthal angle for kinetic fitting is estimated well

Range in target

B4-SWATH mode in target reconstruction did not work. It is fixed.

range in target

(normalized by number of events)

Range in target (cm)

• Real ----- UMC

Consistency between real and UMC is retained

True energy deposit in target (MeV)

- Hidden energy
- Energy deposit in edge fiber
- Saturation effect

Hidden Energy True pion track Pion cells reconstructed by KOFIA True kaon track Kaon cells reconstructed by KOFA True kaon stopping position

Hidden energy

Two measurable variables are used for correction

Number of kaon cells in swath

Angle between kaon and pion

Hidden energy depends on two variables

Hidden energy

Angle between kaon and pion vs. hidden energy

Number of kaon cells in swath= 1

Number of kaon cells in swath= 3

energy deposit in edge fiber

TS_D_EDGE is length of red line after correction of dip angle

TS_D_EDGE

Saturation effect

Saturation effect:

Unsaturated energy – saturated energy Saturation is based on birk's formula

REAL data

Calibration on target includes saturation effect. This effect is already considered.

UMC data

Saturation effect should be considered.

before and after energy calibration in target

Energy deposit in target (ETG)

Trigger kp21
Pion assumption

Trigger km21

Muon assumptio

OLD

E787 standard

Summary of target correction

1) Azimuthal angle

New method is employed. Dependence on range is removed.

2) Range in target

A bug is fixed. Consistency of range in target is improved.

3) Energy deposit in target

- (1) hidden energy
- (2) energy deposit in edge fiber
- (3) saturation effect

Reconstrucion of momentum and energy

PDC distribution in E787

Momentum

Distribution of PDC is different between UMC and real data

Kinetic fit (most primary cut)

6 constraints

- ◆ Momentum conservation (x,y,z 3 constraints)
- Energy conservation
- mass π^+
- mass π^0

13 variables

- Pion Momentum 1
- Energy of pion and gamma 4
- Azimuthal angle 4
- •Dip angle 4

Stretch functions

Kinetic fit requires that a stretch function should be a normal Gaussian

Stretch function
$$\equiv \frac{X_{meas}^{i} - X_{fit}^{i}}{\sqrt{\sigma_{meas}^{i}}^{2} - \sigma_{fit}^{i}}$$
 X: variable σ : resolution

There is a shift of measured variable for stretch function to be a normal Gaussian

Shift of measured value

Stretch functions provides us the information on gap of detector position and calibration.

UMC

Pion Momentum ptot' = ptot + $0.4 + 1.70*\sigma$ MeV/c

Pion energy $etot' = etot + 2.11*\sigma MeV$

Z positon of gamma no offset

σ:Normal Gaussian
Smearing parameter
is set to the same
value used
in 1995 analysis

Real

Pion Momentum ptot' = ptot - 1.4 MeV/c

Pion energy etot' = etot + 1.8 MeV

Z positon of gamma ZG = ZG + 0.649 cm

PDC distribution in E787

Momentum

PDC explains the discrepancy of momentum between real and UMC

Momentum for kinematic fit

• Real

input of momentum for kinetic fit

MeV/c

Scale of momentum

Scale of momentum is consistent between UMC and real data

Kinetic energy for kinetic fit

RealUMC

Kinetic energy for input of kinetic fit

MeV

Energy for kinematic fit

Scale of momentum and energy scale is different between UMC and real data

Distribution of chisquare probability

Most powerful cut in this analysis

Number of events

'98 data 1/3 sample

Number of events is 8200 (140MeV/c < pion mometum < 180 MeV/c)

Background estimation (real data)

$$\pi^{+}\pi^{0}$$
, $\mu^{+}\pi^{0}$, $e^{+}\pi^{0}\nu$

(Accidental hits)

These backgrounds are tagged by offtime photon

Tagged 755 events

π+/μ+ separation
Missing momentum
kinetic fit

10 events remain

$$\frac{N_{\text{bkg}}}{\pi^+\pi^0\gamma} = 0.16\%$$

$\pi^+\pi^0\pi^0$ bifurcation

Summary of background estimation

$$\pi^+\pi^0, \, \mu^+\pi^0, \, e^+\pi^0 v \qquad 0.16\%$$
 (Accidental hits)

$$\pi^{+}\pi^{0}\pi^{0}$$
 0.11%

Background estimation

Background level is low.

140 MeV/c < pion momentum< 180 MeV/c

Real data & UMC consistency

Events are rejected if W is larger than 0.4 in order to make more pure IB sample.

DE component is negligible if W < 0.4

Ratio of DE to IB if BR(DE) is assumed to 4.7*10-6

Real data & UMC consistency

UMC IB data reproduces the real data?

Events are rejected if W is larger than 0.4 in order to make more pure IB sample.

Real data & UMC consistency

UMC IB data reproduces the real data?

Events are rejected if W is larger than 0.4 in order to make more pure IB sample.

Extension to lower momentum region

IB/DE ratio

Assumuing BR(DE)=4.7*10⁻⁶

Momentum (MeV/c)

Assuming that the ratio of IB/DE in 140 MeV/c < P < 180 is the same in lower moentum region

Momentum (MeV/c)

• Real ---- UMC(IB)

Summary and future prospect

- Correction on target is done
- Consistency between real and UMC is retained.
- Study of lower momentum region